Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 295(33): 11928-11937, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32636300

RESUMEN

Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes, where it is synthesized locally and plays an important role in mitochondrial bioenergetics. Previous studies in the yeast model have indicated that CL is required for optimal iron homeostasis, which is disrupted by a mechanism not yet determined in the yeast CL mutant, crd1Δ. This finding has implications for the severe genetic disorder, Barth syndrome (BTHS), in which CL metabolism is perturbed because of mutations in the CL-remodeling enzyme, tafazzin. Here, we investigate the effects of tafazzin deficiency on iron homeostasis in the mouse myoblast model of BTHS tafazzin knockout (TAZ-KO) cells. Similarly to CL-deficient yeast cells, TAZ-KO cells exhibited elevated sensitivity to iron, as well as to H2O2, which was alleviated by the iron chelator deferoxamine. TAZ-KO cells exhibited increased expression of the iron exporter ferroportin and decreased expression of the iron importer transferrin receptor, likely reflecting a regulatory response to elevated mitochondrial iron. Reduced activities of mitochondrial iron-sulfur cluster enzymes suggested that the mechanism underlying perturbation of iron homeostasis was defective iron-sulfur biogenesis. We observed decreased levels of Yfh1/frataxin, an essential component of the iron-sulfur biogenesis machinery, in mitochondria from TAZ-KO mouse cells and in CL-deleted yeast crd1Δ cells, indicating that the role of CL in iron-sulfur biogenesis is highly conserved. Yeast crd1Δ cells exhibited decreased processing of the Yfh1 precursor upon import, which likely contributes to the iron homeostasis defects. Implications for understanding the pathogenesis of BTHS are discussed.


Asunto(s)
Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Proteínas de Unión a Hierro/metabolismo , Hierro/metabolismo , Mioblastos/metabolismo , Aciltransferasas , Animales , Síndrome de Barth/genética , Síndrome de Barth/patología , Cardiolipinas/genética , Línea Celular , Eliminación de Gen , Técnicas de Inactivación de Genes , Proteínas de Unión a Hierro/genética , Ratones , Mioblastos/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Frataxina
2.
Artículo en Inglés | MEDLINE | ID: mdl-31672571

RESUMEN

Previous studies demonstrated that loss of CL in the yeast mutant crd1Δ leads to perturbation of mitochondrial iron­sulfur (FeS) cluster biogenesis, resulting in decreased activity of mitochondrial and cytosolic Fe-S-requiring enzymes, including aconitase and sulfite reductase. In the current study, we show that crd1Δ cells exhibit decreased levels of glutamate and cysteine and are deficient in the essential antioxidant, glutathione, a tripeptide of glutamate, cysteine, and glycine. Glutathione is the most abundant non-protein thiol essential for maintaining intracellular redox potential in almost all eukaryotes, including yeast. Consistent with glutathione deficiency, the growth defect of crd1Δ cells at elevated temperature was rescued by supplementation of glutathione or glutamate and cysteine. Sensitivity to the oxidants iron (FeSO4) and hydrogen peroxide (H2O2), was rescued by supplementation of glutathione. The decreased intracellular glutathione concentration in crd1Δ was restored by supplementation of glutamate and cysteine, but not by overexpressing YAP1, an activator of expression of glutathione biosynthetic enzymes. These findings show for the first time that CL plays a critical role in regulating intracellular glutathione metabolism.


Asunto(s)
Cardiolipinas/metabolismo , Glutatión/biosíntesis , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cisteína/metabolismo , Compuestos Ferrosos/metabolismo , Ácido Glutámico/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Estrés Oxidativo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
3.
Adv Exp Med Biol ; 991: 195-213, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23775697

RESUMEN

This review focuses on recent studies showing that cardiolipin (CL), a unique mitochondrial phospholipid, regulates many cellular functions and signaling pathways, both inside and outside the mitochondria. Inside the mitochondria, CL is a critical target of mitochondrial generated reactive oxygen species (ROS) and regulates signaling events related to apoptosis and aging. CL deficiency causes perturbation of signaling pathways outside the mitochondria, including the PKC-Slt2 cell integrity pathway and the high osmolarity glycerol (HOG) pathway, and is a key player in the cross-talk between the mitochondria and the vacuole. Understanding these connections may shed light on the pathology of Barth syndrome, a disorder of CL remodeling.


Asunto(s)
Cardiolipinas/fisiología , Transducción de Señal/fisiología , Animales , Apoptosis , Transporte Biológico , Metabolismo Energético , Humanos , Mitocondrias/fisiología , Especies Reactivas de Oxígeno/metabolismo , Vacuolas/fisiología
4.
J Biol Chem ; 288(3): 1696-705, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23192348

RESUMEN

Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes, where it is synthesized locally and plays a critical role in mitochondrial bioenergetic functions. The importance of CL in human health is underscored by the observation that perturbation of CL biosynthesis causes the severe genetic disorder Barth syndrome. To fully understand the cellular response to the loss of CL, we carried out genome-wide expression profiling of the yeast CL mutant crd1Δ. Our results show that the loss of CL in this mutant leads to increased expression of iron uptake genes accompanied by elevated levels of mitochondrial iron and increased sensitivity to iron and hydrogen peroxide. Previous studies have shown that increased mitochondrial iron levels result from perturbations in iron-sulfur (Fe-S) cluster biogenesis. Consistent with an Fe-S defect, deletion of ISU1, one of two ISU genes that encode the mitochondrial Fe-S scaffolding protein essential for the synthesis of Fe-S clusters, led to synthetic growth defects with the crd1Δ mutant. We further show that crd1Δ cells have reduced activities of mitochondrial Fe-S enzymes (aconitase, succinate dehydrogenase, and ubiquinol-cytochrome c oxidoreductase), as well as cytosolic Fe-S enzymes (sulfite reductase and isopropylmalate isomerase). Increased expression of ATM1 or YAP1 did not rescue the Fe-S defects in crd1Δ. These findings show for the first time that CL is required for Fe-S biogenesis to maintain mitochondrial and cellular iron homeostasis.


Asunto(s)
Cardiolipinas/metabolismo , Regulación Fúngica de la Expresión Génica , Hierro/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Saccharomyces cerevisiae/genética , Aconitato Hidratasa/genética , Aconitato Hidratasa/metabolismo , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Perfilación de la Expresión Génica , Humanos , Peróxido de Hidrógeno/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Isomerasas/genética , Isomerasas/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Sulfito Reductasa (NADPH)/genética , Sulfito Reductasa (NADPH)/metabolismo
5.
J Lipid Res ; 53(7): 1417-25, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22556215

RESUMEN

A simple and fast method of lipid analysis of isolated intact mitochondria by means of MALDI-TOF mass spectrometry is described. Mitochondria isolated from bovine heart and yeast have been employed to set up and validate the new method of lipid analysis. The mitochondrial suspension is directly applied over the target and, after drying, covered by a thin layer of the 9-aminoacridine matrix solution. The lipid profiles acquired with this procedure contain all peaks previously obtained by analyzing the lipid extracts of isolated mitochondria by TLC and/or mass spectrometry. The novel procedure allows the quick, simple, precise, and accurate analysis of membrane lipids, utilizing only a tiny amount of isolated organelle; it has also been tested with intact membranes of the bacterium Paracoccus denitrificans for its evolutionary link to present-day mitochondria. The method is of general validity for the lipid analysis of other cell fractions and isolated organelles.


Asunto(s)
Lípidos/análisis , Mitocondrias/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología , Animales , Bovinos , Mitocondrias Cardíacas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...